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MAC-CPTM Situations Project 

Situation 43: Can You Circumscribe a Circle about This 
Polygon? 

Prompt 

In a geometry class, after a discussion about circumscribing circles about 
triangles, a student asked, “Can you circumscribe a circle about any polygon?”  

Commentary 

A polygon that can be inscribed in a circle is called a cyclic polygon. Not every 
polygon is cyclic, but there are infinite cyclic polygons. This can be understood by 
considering a given circle and all the possibilities of how many points can be 
placed on the circle, and then connected to form a polygon. However, there are 
certain classes of polygons that are noteworthy because they are always cyclic. 
The conditions under which a circle circumscribes a given polygon are dependent 
upon the relationships among the angles, the sides, and the perpendicular 
bisectors of the sides of the polygon. The following foci describe classes of cyclic 
polygons in order of the number of their sides: triangles, certain quadrilaterals, 
and regular polygons. Focus 3 provides one way to check whether a given polygon 
is cyclic: a polygon is cyclic if and only if the perpendicular bisectors of all of its 
sides are concurrent. Though the inclusion of various geometries would provide 
interesting discussion, the Foci in this Situation are limited to Euclidean 
geometry in a plane.  

Mathematical Foci 

Mathematical Focus 1 

Every triangle is cyclic. This fact is core to establishing a condition for other 
polygons to be cyclic. 
 
Because the center of a circle is equidistant from all the points on the circle (this 
distance is the radius), an inscribed triangle is one in which the three vertices of 
the triangle lie on the circumscribed circle. Conversely, the circle circumscribed 
around a particular triangle must have as its center the point that is equidistant 
from the vertices of the triangle. Circumscribing a circle about a triangle, then, 
requires finding a point that is equidistant from the three vertices of the triangle. 
This point is called the circumcenter of the triangle.  
 
A point is equidistant from two points, A and B, if and only if it lies on the 
perpendicular bisector of the segment whose endpoints are A and B. A proof of 
this theorem is included in the Post-Commentary. Because of this, consider 
perpendicular bisectors of the sides of a triangle to find the circumcenter. Given 
ΔABC, the perpendicular bisectors (in the plane of ΔABC) of segments AB and BC 
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intersect the sides at D and E, respectively.   AB and BC are not parallel, so lines 
that are perpendicular to them are not parallel. Therefore the perpendicular 

bisectors of   AB and BC  must intersect at some point, call it P. P is equidistant 

from A and B because it lies on the perpendicular bisector of   AB,  and P is 

equidistant from B and C because it lies on the perpendicular bisector of   BC.  So 
P is equidistant from A, B, and C. That is, P is the circumcenter of ΔABC. So, 
given any set of three noncollinear points, we can find a circumcenter. 
 

  

Another way to think about triangles being cyclic is to consider the equation of a 
circle in the coordinate plane: (x-h)2+(y-k)2=r2 where (h,k) is the center of the 
circle, r is the radius, and every ordered pair (x,y) that satisfies the equation lies 
on the circle. In order to find a particular circle (that is, in order to find the three 
unknowns h, k, and r), one would need three equations. That is, if one had three 
ordered pairs (x,y) (i.e. three points), one could determine the circle. This is 
another way of showing that three noncollinear points determine a unique circle. 
Given those three points, one could find the circumcenter. 

 

Mathematical Focus 2 

A convex quadrilateral in a plane is cyclic if and only if its opposite angles are 
supplementary.  
 
We can establish that a convex quadrilateral is cyclic if and only if its opposite 
angles are supplementary. A convex quadrilateral is described as a quadrilateral 
in a plane such that no two points inside the quadrilateral can be connected by a 
segment that intersects one of the sides. Proving that two conditions (a 
quadrilateral being cyclic and its opposite angles being supplementary) are 
equivalent requires proving an implication and its converse. That is, to prove 
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 A ! B we need to prove  A! B and B ! A .  In this proof, we use a logically 
equivalent construction of proving  A! B  and then proving  not A!  not B . 
 
a) First we prove that given a convex, cyclic quadrilateral, its opposite angles are 
supplementary. In the cyclic quadrilateral ABCD shown in the following diagram, 
∠ABC is opposite ∠CDA. Since the measure of an inscribed angle is half of the 
measure of the arc in which it is inscribed,  
m∠ABC = (1/2)(m arcCDA) and m∠CDA = (1/2)(m arcABC)  
m∠ABC + m∠CDA = (1/2)(m arcCDA) + (1/2)(m arcABC) 

        = (1/2)(m arcCDA + m arcABC) 
Since arcs CDA and ABC together form a circle, m arcCDA + m arcABC=360. By 
substitution, m∠ABC +m ∠CDA = (1/2)(360) = 180. Therefore ∠ABC and ∠CDA 
are supplementary.  (Angles BAD and DCB could be handled similarly.) 

 
 
b) Next we prove that if the opposite angles of a quadrilateral are supplementary, 
then the quadrilateral is cyclic. Begin with convex quadrilateral ABCD such that 
angles BAD and DCB are supplementary and angles ABC and CDA are 
supplementary. Draw the circle defined by points A, B, and C. (This circle can be 
constructed since three points determine a circle—see Focus 1). Suppose D is 
located in the interior of the circle.  Then extend segments AD and CD until they 
each intersect the circle. By the inscribed angle theorem, the sum of angles BAD 
and DCB is less than 180 degrees (because together they subtend less than a 
whole circle). This is a contradiction, therefore D cannot be inside the circle. 
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Suppose instead that D is outside the circle. In this case, the sum of angles BAD 
and DCB will be greater than 180 because together they subtend more than a 
whole circle (they subtend the whole thing plus a piece of it twice). This is a 
contradiction, so D cannot be outside the circle. 

D

B

A

C

 
Therefore D must be on the circle and quadrilateral ABCD is cyclic. 
 
A corollary that is implied by the above result is that every rectangle is cyclic. 
Also, no parallelograms other than rectangles are cyclic. Moreover, every 
isosceles trapezoid is cyclic. [Note: A commonly used definition of trapezoid is 
that it is a quadrilateral with exactly one pair of parallel sides. However, 
trapezoids are defined by some sources as a quadrilateral with at least one set of 
parallel sides. If trapezoids are defined this way, then every rectangle is an 
isosceles trapezoid.]  

Mathematical Focus 3 

There are four-sided figures in the plane that behave differently from convex 
quadrilaterals. Concave quadrilaterals are never cyclic, and a four-sided figure 
with non-sequential vertices is cyclic if and only if its “opposite” angles are 
congruent. 
 
Cyclic quadrilaterals have opposite angles that are supplementary (see Focus 2). 
Consider a concave polygon like quadrilateral EFGH shown below. To see that 
quadrilateral EFGH is non-cyclic, suppose that we construct the circle passing 
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through the points EFG (in general, through the 3 points that occur at the 
polygon’s interior angles that are not greater than 180 degrees – this is possible 
because a concave quadrilateral will have exactly one interior angle greater than 
180 degrees, in this case it’s angle EHG).  Suppose point H lies on this circle.  But 
then angle EHG is less than 180 degrees because it cannot subtend the whole 
circle (much less even more than it) and so we have a contradiction.   

E

F

G

H

 
A quadrilateral is commonly defined as a polygon with four sides. Therefore it is 
important that the definition of polygon be clear. If the definition of polygon 
requires that it be a simple, closed figure (as it is in many high school 
mathematics textbooks), then the figures in the following discussion are not 
polygons, and therefore not quadrilaterals. However, if the definition requires 
only that a quadrilateral be a closed figure in a plane with four straight sides, then 
a quadrilateral with non-sequential vertices is worth discussing in this Situation. 
 
A quadrilateral with non-sequential vertices is cyclic if and only if its “opposite” 
angles are congruent. Such a quadrilateral has sides that cross, as seen below. By 
“opposite” angles we mean, for example, angles NMP and PON or angles ONM 
and MPO. 
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In this case, we must first prove that if a quadrilateral with non-sequential 
vertices is cyclic, then its “opposite” angles are congruent. Consider quadrilateral 
MNOP above. Since angles NMP and PON lie on the circle and intersect the same 
arc (arc NP), they are congruent. In the same way, angles ONM and MPO both 
intersect arc MO, so they are congruent. It is interesting to note that the sum of 
the interior angles of this type of quadrilateral is not 360. 
 
Next, we must prove that if “opposite” angles of a quadrilateral with non-
sequential vertices are congruent, then the quadrilateral is cyclic. The same 
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strategy that was used for the converse in part a) can be used here: Begin with 
quadrilateral MNOP such that angles NMP and PON are congruent, angles ONM 
and MPO are congruent, and all the vertices except P lie on circle r.  If P is inside 
circle r, then extend sides MP and OP to intersect circle r.  Then angles NMP and 
PON subtend different size arcs and so are not equal, which is a contradiction.  If 
P is outside circle r, then side MP intersects circle r in a different point than side 
OP and so angles NMP and PON are again non-congruent, which is a 
contradiction.  Therefore, P must lie on circle r.     
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Mathematical Focus 4 
 
Every planar regular polygon is cyclic. However, not every cyclic polygon is 
regular.  
 
As was discussed in Focus 1, a point is equidistant from two points, A and B, if 
and only if it lies on the perpendicular bisector of the segment whose endpoints 
are A and B. In order for a polygon to be cyclic, there must be a single circle that 
passes through all of its vertices. In other words, there must be a single point that 
is equidistant from all the vertices. This point must lie on the perpendicular 
bisectors of all the sides of the polygon. In order for a point to lie on all these 
bisectors, the bisectors must be concurrent, and the point of concurrency will be 
the circumcenter of the polygon. Since the statement about equidistance and the 
perpendicular bisector is biconditional, we can also make a biconditional 
statement about the concurrency of the perpendicular bisectors of the sides of a 
polygon. That is, the perpendicular bisectors of the sides of a polygon are 
concurrent if and only if the polygon is cyclic. 
 
Every triangle is a cyclic polygon, as was seen in Focus 2. The question remains as 
to which other polygons are cyclic. By examining the perpendicular bisectors of 
the sides of a polygon, one can determine a set of conditions on a polygon that is 
sufficient to conclude whether a circle can circumscribe that polygon. In 
particular, we can show that every regular polygon is cyclic. 
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We have established that if the perpendicular bisectors of the sides of a polygon 
are concurrent, the polygon is cyclic. We will now show that the perpendicular 
bisectors of the sides of a regular polygon are concurrent and conclude that every 
regular polygon is cyclic. 
 
By definition, a regular polygon is an equilateral and equiangular n-sided 
polygon. Consider a regular polygon with adjacent vertices, A, B, C, and D. Let P 

be the point of intersection of the perpendicular bisectors ( FP and GP , 

respectively) of  AB  and BC . It can be shown that ΔAFP ≅ ΔBFP ≅ ΔBGP ≅ ΔCGP 
using the fact that P is equidistant from A, B, and C, and using the HL 

(hypotenuse-leg) congruence theorem. Construct  PH perpendicular to  DC  and 
consider ΔHCP. ∠FBG ≅ ∠GCH since the polygon is equiangular. ∠FBP ≅ ∠GCP 
because ΔBFP ≅ ΔCGP. By angle subtraction, ∠GBP ≅∠HCP, so ΔFBP ≅ ΔHCP by 
AAS.  Because of congruent triangles, HC = FB and because the polygon is 
equilateral, AB = CD. Also, FB=(1/2)AB since F is the midpoint of AB. So HC = 
(1/2)CD by substitution. We know that C, H, and D are collinear, so HC = HD. 

Thus  PH  is the perpendicular bisector of DC . The argument can be extended to 
successive vertices of the polygon, resulting in establishing that each of the 
perpendicular bisectors of the sides contains the point P. That is, the 
perpendicular bisectors are concurrent. Note that this argument does break down 
if the polygon in question is not regular. If the polygon is not regular (specifically 
if the sides are not equal to each other) we cannot prove that all of the triangles 
listed above are congruent.  
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Therefore, every regular polygon has concurrent perpendicular bisectors, and 
therefore is cyclic. While every regular polygon is cyclic, it is not true that every 
cyclic polygon is regular. We have already seen that every triangle is cyclic, but 
every triangle is not an equilateral triangle and thus not regular. So it is possible 
to have polygons that are not regular, but are cyclic as shown in the figure below. 
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Post-Commentary 

In making mathematical statements, it is important to recognize which are 
biconditional and which are not. In Focus 2, we proved a statement and its 
converse in order to prove the biconditional. In Focus 3, the converse of the 
statement we proved is not true and so the biconditional is not true. In Focus 1, 
the use of the biconditional was not as overt. In that Focus, we used the property 
that each point on a perpendicular bisector of a segment is equidistant from the 
endpoints of the segment. Later in the focus, in order to establish uniqueness, we 
needed the result that points that are equidistant from the endpoints of a 
segment lie on the perpendicular bisector of the segment. Since this statement 
was the converse of the earlier property, it requires a proof. We include that proof 
here: 
 
A line is a perpendicular bisector of a segment AB if and only if it is 
the set of all points that are equidistant from A and B. 
 
a) If a point lies on the perpendicular bisector of a line segment AB, then it is 
equidistant from A and B.  
Let M be the midpoint of segment AB and let P be a point that lies on the 
perpendicular bisector of AB such that P does not lie on AB. By the definition of 
perpendicular bisector, AM = BM and ∠BMP = ∠AMP = 90.  Now consider 
ΔAMP and ΔBMP. These triangles share side PM, so they are congruent by SAS. 
Therefore PA = PB. 

M

P

A B

 
b) If a point is equidistant from A and B then it lies on the perpendicular bisector 
of the line segment AB.  
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Let P be a point not on segment AB such that PA = PB. This means ΔPAB is 
isosceles and its base angles are congruent, so ∠BAP = ∠PBA. Let M be the 
midpoint of segment AB. Since triangles PAM and PBM share side PM, they are 
congruent by SAS. Since ∠BMA is a straight angle, ∠PMA + ∠BMP = 180. Also, 
∠PMA = ∠BMP since ΔPAM ≅ ΔPBM. Thus, 
∠PMA + ∠BMP = 180 
2∠PMA = 180 
∠PMA = 90 
Therefore segment PM is a perpendicular bisector of segment AB. 


